
Soliton contribution to the electron paramagnetic resonance linewidth in a two-dimensional

antiferromagnet with a staggered field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 276211

(http://iopscience.iop.org/0953-8984/19/27/276211)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 19:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 276211 (7pp) doi:10.1088/0953-8984/19/27/276211

Soliton contribution to the electron paramagnetic
resonance linewidth in a two-dimensional
antiferromagnet with a staggered field

M P P Fonseca1 and A S T Pires

Departamento de Fı́sica, Universidade Federal de Minas Gerais, CP 702, 30123-970,
Belo Horizonte, MG, Brazil

E-mail: mfonseca@fisica.ufmg.br and antpires@fisica.ufmg.br

Received 19 April 2007, in final form 31 May 2007
Published 21 June 2007
Online at stacks.iop.org/JPhysCM/19/276211

Abstract
In this paper we study the interactions between magnons and a soliton in
a classical and isotropic two-dimensional Heisenberg antiferromagnet in the
presence of a staggered field applied perpendicularly to the XY plane. The
temperature dependence of the linewidth is calculated using the dynamic spin
correlation function derived from soliton–magnon scattering.

The study of the interaction between magnons and topological excitations in classical magnetic
systems is of fundamental importance, as it is the starting point for a thermodynamic analysis of
the system, as shown by Currie et al [1]. As pointed out by Zaspel et al [2] it is also important
in the study of the dynamics of vortices. As is well known, topological excitations contribute
to a central peak in the dynamical relaxation function and this peak is hard to detect in an
unambiguous way. Nevertheless, the signature of the topological excitations can be seen in
the electron paramagnetic resonance (EPR) linewidth [2]. In this paper we will focus on these
fluctuations as observed through EPR line broadening, which occurs in a narrow temperature
range just above the Néel temperature TN, in the nearly 2D antiferromagnetic case. Waldner [3]
showed experimentally that classical layered antiferromagnets exhibited an Arrhenius EPR
linewidth given by �H ∼ exp(Es/T ), where Es is the soliton energy, and T is the temperature
dependence immediately above TN. In [3, 4] it was shown that the measured Es energy in the
EPR linewidth temperature dependence agreed with the energy of the Belavin and Polyakov [5]
soliton to within a few per cent for four different compounds, and it was implied that solitons
contributed to the EPR linewidth in the critical fluctuation region.

The EPR linewidth is related to the time-dependent spin correlation function, and
consequently static solitons cannot contribute to the linewidth. To interpret the observed
Arrhenius behaviour it is necessary to calculate the dynamic soliton contribution to the EPR
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linewidth or equivalently the time-dependent correlation function in the critical fluctuation
region. Gouvea et al [6], through the results of the interaction between topological excitations
and spin waves, showed a rise to the central peak in the frequency-dependent correlation
function. Zaspel [7] showed that soliton motion also results in a central peak. Another
important contribution to soliton dynamics is the interaction of spin waves with the soliton;
consequently this interaction contributes to time-dependent spin correlation functions.

Solitons interacting with magnons have been studied in two-dimensional nonlinear
sigma models (isotropic [8] and anisotropic [9]) and in two-dimensional anisotropic
ferromagnets [10]. It has been found that the quantum corrections to the classical soliton,
or vortex energy, given by the zero-point energy of the spin waves measured with respect to the
vacuum can change strongly the classical picture, introducing interactions between solitons [8]
as well as an internal degree of freedom [9].

Our purpose in this paper is to study the EPR linewidth due to interaction between spin
waves and solitons, in a two-dimensional antiferromagnet with a uniform staggered field
applied perpendicularly to the plane. Asano et al [11] reported electron spin resonance of
the S = 1/2 antiferromagnet Heisenberg chain, Cu purimidine. The effect of the staggered
field was clearly observed for the ESR linewidth. A systematic study of coupled S = 1/2
antiferromagnet chains in an effective staggered field was performed by [12]. The mechanisms
generating the staggered fields in real magnets was discussed in [13–16]. Recently many works
have been published focusing on the importance of this study [17, 18]. All materials studied
so far are highly one dimensional or quasi-one dimensional. As far as we know there are at the
present time no experimental results for an antiferromagnet in 2D in the presence of a staggered
field. Although there is a lot of theoretical work dedicated to the staggered field in one-
dimensional antiferromagnets, the number of papers relating to 2D models is small [19, 20].
We found that the lowest-order effect of an inhomogeneous soliton is to produce an elastic
scattering centre for the spin waves, and we obtained the solution for the EPR linewidth.

We start by considering the model described by the following Hamiltonian:

H =
∑

〈i j〉
[JSi, j · (Si+1, j + Si, j+1) + g0μ0B · (−1)i Si, j ], (1)

where the summation extends over all sites of a square lattice, J is the positive exchange
constant, Si, j is the spin vector at site (i, j), g0 is the gyromagnetic ratio, μ0 = e/2mc is
the Bohr magneton divided by the Planck constant and B is the magnetic field which will be
taken to point in the third direction B = Bẑ. The antiferromagnetic model in a staggered field
is a very convenient model to study, since at low temperature it can be mapped in the nonlinear
sigma model [21, 22], with the staggered field acting as a source. Then, the Hamiltonian can
be written as

H = J

2

∫
[(∂0ln)2 − (∂αln)2 + 2hl3] d2x α = 1, 2, (2)

where h = g0μ0B/(4J S). It is useful to resolve the constraint l2
n = 1 explicitly using the

spherical parameterization ln = S(sin θ cos φ, sin θ sin φ, cos θ) in terms of which

H = J

2

∫ [
1

c2

(
∂θ

∂ t

)2

− ( �∇θ)2 + sin2 θ

[
1

c2

(
∂φ

∂ t

)2

− ( �∇φ)2

]
+ 2h cos θ

]
d2x, (3)

where c = 2a J S is the spin-wave velocity. The parameter a is the lattice spacing. The
equations of motion following from equation (3) are:

∇2θ − 1

c2

∂2θ

∂ t2
= sin θ cos θ

[
( �∇φ)2 − 1

c2

(
∂φ

∂ t

)2]
+ h sin θ, (4)

∇2φ − 1

c2

∂2φ

∂ t2
= −2 cot θ

[
( �∇θ · �∇φ) − 1

c2

∂φ

∂ t

∂θ

∂ t

]
. (5)
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The static solution φs for equations (4) and (5) is φs = q arctan(y/x), were the parameter
q = 0, 1, 2, . . . plays the role of the topological charge of the soliton. We can write the
localized solutions of equations (4) and (5) in polar coordinates in the form

θ = θs(r), θs(0) = 0, θs(∞) = 2π, φs(ϕ, t) = qϕ − 	t . (6)

Here, 	 is the internal precession frequency of the soliton and can be determinate, through the
number of bound magnons N . Substituting equation (6) into equations (4) and (5), we notice
that equation (5) is automatically satisfied. Then, from equation (4), we obtain

1

k2
0

(
d2θs

dr 2
+ 1

r

dθs

dr

)
+

(
1 − q2

k2
0r 2

)
sin θs cos θs − h

k2
0

sin θs = 0, (7)

where k2
0 = 	2/c2. By convenience we have introduced l2

0 = 1/k2
0 and H = h/k2

0 .
The solution of equation (7) was encountered by Kosevich et al [23]. The magnetization in
equilibrium is [θs(r) = θ0] from the soliton (r → ∞), and θs(r) = 0 for r = 0. It follows
from the latter condition that, as r → 0

θs(r) = (r/r0)
|q|, r0 = constant. (8)

Notice that θs(r) does not depend of H ; however, the behaviour for r → ∞ depends on H .
For H 	= 0 and 1 the solution has the following behaviour at infinity:

θs(r) = θ0 − q2 H 2

√
1 − H 2

(
l0

r

)2

H 	= 0 and 1. (9)

The main macroscopic characteristic of the soliton is its energy. It is well known that
soliton energy in an infinite crystal diverges logarithmically. Hence, with a logarithmic
accuracy the soliton energy is

Es = π Jq2(1 − H 2)aM2
0 ln[R A(H )/ l0] (10)

where a is the lattice parameter, M0 is the z-magnetization and R is a cut-off soliton radius. The
function A(H ) is a finite term with R → ∞. The function A(H ) can be found by numerical
methods. As was shown by Kosevich et al [23], this function varies between 0.2 for (H = 1)

and 4.2 for (H = 0). More details about this solution can be found in [20]. This solution
has been criticized in a comment made by Sheka [24], where it is affirmed that the energy of
the solution diverges with the size of the soliton, as in fact it diverges. He concludes that a
solution for soliton precessional should not exist. However, we have two solution types here:
one in which the soliton is considered not to be precessional—in this case it is sufficient to
take 	 = 0. This solution was shown in [25], and was not questioned. The fact is that the
solution with 	 = 0 presents a finite energy. The other solution, 	 	= 0, could be applied
to finite systems such as nano-discs, where the energy is finite. The fact is that the solution
obtained by Kosevich [23] for equation (7) really showed a divergence that is logarithmic in the
energy. Nevertheless, we believe that the arguments mentioned above reinforce the utilization
of solutions (8) and (9).

In order to determine the behaviour of magnons in the presence of a soliton, we assume
that the spin polar angle is given by θ(�r, t) = θs(r) + η(�r , t), and the spin azimuthal angle by
φ = �k · �r −ωφ t . Here, η(�r , t) are assumed to be a small quantity, i.e. η(�r , t) � 1, which reduce
to the magnon solutions if no solitons are present. In the presence of a soliton, η(�r , t) gives the
change in the soliton configuration as a result of the soliton–magnon interaction. Considering
that the asymptotic component is θs(r) = 0 (equations (6), (8) and (9)), since θ0 � 1, we can
substitute θ(�r, t) in equation (4), neglecting quadratics terms in η(�r , t), and obtain the equation
of motion for magnons in the presence of a soliton as

∇2η − 1

c2

∂2η

∂ t2
= η

[
( �∇φs)

2 − 1

c2

(
∂φs

∂ t

)2

+ h

]
. (11)

3



J. Phys.: Condens. Matter 19 (2007) 276211 M P P Fonseca and A S T Pires

The solutions for equation (12) represent the out-of-plane spin waves. We showed the solution
for equation (12) in [20]; it can be written as

η(�r , t) = C0 Jμ(kr)e−i[nϕ+ωθ t], (12)

where Jμ(kr) is the Bessel function, μ = √
n2 + q2, and n = 0, 1, 2, 3, . . . represent the

quantum number of angular momentum for the out-of-plane spin waves. The parameter k is
the respective wavevector. The constant C0 is determined through the normalization of the
eigenfunctions. The equation (11) admits the dispersion relation ω2

θ = k2c2 − 	2 + hc2.
Sheka, in the comment [24], criticized the choice of this solution of plane waves in the form
η(�r , t) = exp(i[�k ·�r −ωt]), in which it is not a correct mathematical object. We agree; however,
in the asymptotic limit the Bessel function can be written as a linear combination of the Hankel
functions of first and second type, where they have form of plane waves. Therefore, we have
used the solution η(�r , t) = exp(i[�k · �r − ωt]) as an artifice, just to calculate the dispersion
relation. The solution equation (12) to equation (11) is correct, and can be verified easily by
the reader.

To calculate the out-of-plane spin-correlation function we use the soliton structure factor

f i (�k, t) =
∫

l i (�r, t)ei�k ·�r d2r, (13)

where i = x, y is the i component of the sublattice magnetization with time dependence
resulting from the soliton–magnon interaction. This structure factor contains a static
contribution from the static solution and a time-dependent contribution from the soliton–
magnon scattering. For η � 1 and θs � 1 we made the approximation sin[θs + η] ≈ θs + η.
The term �k · �r in equation (13) can be written in the form �k · �r = |�k||�r | cos(αk − ϕ), where
αk is the angle of the vector �k with the x axis, and ϕ is the angle of the vector �r with the x
axis. For simplicity we will make αk = 0. In this paper, we will calculate the EPR linewidth
for the ground state (n = 0) and a soliton with topological charge q = 1, because these values
describe the state of lower energy. Thus, we can write the structure factor as:

f x,y(�k, t) =
[ ∫ R

0
J1(kr)e−iωθ t +

∫ d

0
θsr→0(r) +

∫ ∞

d
θsr→∞

]

×
{

cos(ϕ + kr cos ϕ − ωφ t)
sin(ϕ + kr cos ϕ − ωφ t)

}
eikr cos(ϕ)r dr dϕ. (14)

Here, θsr→0 and θsr→∞ are equations (8) and (9), respectively. We remark that in this equation
f x and f y corresponds to cos and sin, respectively. In the first integral R is a cut-off. The
parameter d in the limits of integration is a number for which equations (8) and (9) have the
same value. From equations (8) and (9) we obtain

d =
3

√
r0 H 2l2

0

(1 − H 2)1/6
. (15)

Integrating the equation (14), we obtain:

f x
(1)(k, t) = iRπe−i(ωθ +ωφ t)

3k
W1(k R) + iπe−iωφ t d2

2r0
W2(kd) − iH 2l2

0e−iωφ t

√
1 − H 2

W3(kd), (16a)

f y
(1)(k, t) = Rπe−i(ωθ +ωφ t)

3k
W1(k R) + πe−iωφ t d2

2r0
W2(kd) − H 2l2

0e−iωφ t

√
1 − H 2

W3(kd), (16b)

where

W1(k R) ≡ [J0(k R)J1(2k R) − 2J0(2k R)J1(k R)], (17a)
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W2(kd) ≡ J2(2kd)

k
, (17b)

W3(kd) ≡ −kd F[(1/2); (3/2, 2); −(kd)2] + 1. (17c)

The function F[(1/2); (3/2, 2); −(kd/2)2] is a hypergeometric confluent function. In the limit
k → 0, the equations (16) are:

f x
(0)(t) = − iπ H 2l2

0e−iωφ t

√
1 − H 2

, (18a)

f y
(0)(t) = −π H 2l2

0e−iωφ t

√
1 − H 2

. (18b)

The EPR linewidth is the temporal integral of the four-spin-correlation function and is given
by [2, 26, 27, 32]

� = kBT

2χ⊥h̄2

∑

k,k′
A(k0) Re

∫
e−iωr t 〈l i

k(t)l
i
−k′ (t)l i

−k(0)l i
k′ (0)〉 dt, (19)

where χ⊥ is the uniform susceptibility, ωr is the resonance frequency and A(k0) is related to
the Fourier coefficients of the dipolar interaction evaluated at the antiferromagnetic wavevector
(k0 = π/a).

Considering only incoherent scattering from independent solitons [28] at different centres
r j , then l i (�r , t) = ∑

j l (r − r j , t), and the sums over the pair centres yield [29]
n〈 f (k, t) f (−k, t) f (k, 0) f (k, 0)〉 for the correlation function, where f = ( f x + f y)/2 is
a symmetrized structure factor [28] and n is the soliton density. Thus, the leading soliton
contribution to the linewidth is [2]

� ∼ nkBT

χ⊥
S4

2π

2∑

k

Re

[ ∫ ∞

0
〈 f 2

(0)〉〈 f(0) f(1)〉ei4ωφ t eiωr t dt

]
, (20)

with f(0) = ( f x
(0) + f y

(0))/2, f(1) = ( f x
(1) + f y

(1))/2; assuming that magnetization relaxes by
diffusion the complex magnon frequency can be written as ωφ = ck + iDk2/2, where D is
the diffusion coefficient. In equation (20), because of the existence of temporal symmetry,
we made an exchange in the sign of the exponentials to facilitate the results. The soliton
density is proportional to e−Es/2T , where Es is the soliton energy. To a first approximation we
can use the diffusion coefficient obtained through dynamic scaling by Chakravarty et al [30],
D = ξ

√
T/χ⊥, and the correlation length from Takahashi’s [31] modified spin wave theory for

2D AFM, ξ = (1/8
√

2eπ/2)eEs/2T .
Performing the integral, we obtain:

� ∼ nkBT

χ⊥
S4π4 H 6l6

0

2π
√

1 − H 2

2∑

k

[
DRk2

24(1 − H 2)

W1(k R)

(ωr + ωθ + 4ck)2 + 4D2k4

− Dk2d2

16r0(1 − H 2)

W2(kd)

(ωr + 4ck)2 + 4D2k4
+ Dk2 H 2l2

0

8(1 − H 2)4

W3(k R)

(ωr + 4ck)2 + 4D2k4

]
.

(21)

The sum in equation (21) can be converted to an integral in two dimensions. Since well-defined
spins waves exist is ka > 1, the lower limit of the k integral is 1/a. We integrated the sum in k
numerically. The solution EPR linewidth can be shown in graphical form.

In figure 1, we have the behaviour of the EPR linewidth as a function of the temperature,
for a staggered field equal to 0.2J . Here, we took J = kB = h̄ = 1. The behaviour of
the EPR linewidth is very similar, to that presented in the literature. In figure 2, we have the
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Figure 1. Graph of the EPR linewidth as a function of temperature for H = 0.2J , to due soliton–
magnon interaction.

Figure 2. Graph of the logarithm of the EPR linewidth for H = 0.2J, H = 0.4J and H = 0.6J .

behaviour of the logarithm of the EPR linewidth as a function of the temperature. In this figure,
we can see an increase in the EPR linewidth with the increase in the staggered field. Our
theoretical calculation in equation (21) can be compared directly with experimental data for the
EPR linewidth once the experimental data for a 2D antiferromagnet are available.

In conclusion we have calculated the EPR linewidth in two-dimensional antiferromagnets
in the presence of a staggered field. The measurements of the EPR linewidth provide an indirect
method for experimental detection of solitons. The compounds R2BaNiO5 and Cu benzoate,
for instance, can be treated as a one-dimensional antiferromagnet model immersed in a strong
effective staggered field. In summary, solitons interacting with magnons in the classical 2D
AFM result in an EPR linewidth with a dominant exp(Es/T ) temperature dependence. This
dependence can occur only if solitons are present in the fluctuation region.
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